The Software Wars

VVh)_you can’t understand your computer

PAUL DE PALMA

n a bright winter morning in Philadelphia, in 1986, my down-
town office is bathed in sunlight. I am the lead programmer for
a software system that my firm intends to sell to the largest
companies in the country, but like so many systems, mine will never make
it to market. This will not surprise me. If the chief architect of the office
tower on whose twenty-sixth floor I am sitting designed his structure with the
seat-of-the-pants cleverness that I am using to design my system, prudence
would advise that I pack my business-issue briefcase, put on my business-
issue overcoat, say good-bye to all that sunlight, and head for the front door
before the building crumbles like a Turkish high-rise in an earthquake.
But I am not prudent; nor am I paid to be. Just the opposite. My body,
on automatic pilot, deflects nearly all external stimuli. I can carry on a rudi-
mentary conversation, but my mind is somewhere else altogether. In a book-
length profile of Ted Taylor, a nuclear-weapons designer, that John McPhee
wrote for The New Yorker, Dr. Taylor’s wife tells McPhee a wonderful story
about her husband. Mrs. Taylor’s sister visits for the weekend. Taylor dines
with her, passes her in the hall, converses. He asks his wife on Monday morn-
ing—her sister having left the day before—when she expects her sister to ar-
rive. Mrs. Taylor calls this state “metaphysical absence.” You don’t have to
build sophisticated weaponry to experience it. When my daughter was
younger, she used to mimic an old John Prine song. “Oh my stars,” she sang,
“Daddy’s gone to Mars.” As you will see, we workaday programmers have
more in common with weapons designers than mere metaphysical absence.
My mind reels back from Mars when a colleague tells me that the Chal-
lenger has exploded. The Challenger, dream child of NAsA, complex in the
extreme, designed and built by some of the country’s most highly trained

-~ Paul De Palma is associate professor of mathematics and computer science at Gonzaga
University. His essay "http://www.when_is_enough_enough?.com” appeared in the Winter 1999
issue.

69

THE AMERICAN SCHOLAR

engineers, is light-years away from my large, and largely uninspired, piece
of data-processing software. If engineering were music, the Challenger would
be a Bach fugue and my system “Home on the Range.” Yet despite the dif-
ferences in technical sophistication, the software I am building will fail for
many of the same reasons that caused the Challengerto explode seconds af-
ter launch nearly twenty years ago.

S oftware’s unreliability is the stuff of legend. Software Engineering Notes, a
journal published by the AcM, the largest professional association of
computer scientists, is known mostly for the tongue-in-cheek catalogue of
technical catastrophes that appears at the beginning of each issue. In the
March 2001 issue—I picked this off my shelf at random—you can read
about planes grounded in L.A. because a Mexican air-traffic controller
keyed in too many characters of flight description data, about a New York
database built to find uninsured drivers, which snared many of the insured
as well, about Florida eighth graders who penetrated their school’s com-
puter system, about Norwegian trains that refused to run on January 1,
2001, because of a faulty Year 2000 re-
pair. The list goes on for seven pages
and is typical of a column that has PEOPIC often claim that
been running for many years. one of every three

People often claim that one of larg‘e-scale software
every three large-scale software sys- systems gets canc aled

tems gets canceled midproject. Of . :
those that do make it out the door, mldProJCCt' Of those

three-quarters are never imple- that do make it out the
mented: some do not work as in- dOOl‘; three-quarters are
tended; others are just shelved. Mat- never implemented: some
ters grow even more serious with do notwork as intended,

large systems whose functions spread gthers are shelved.
over several computers—the very sys-

tems that advances in networking
technology have made possible in the past decade. A few years ago, an I1BM
consulting group determined that of twenty-four companies surveyed, 55
percent built systems that were over budget; 68 percent built systems that
were behind schedule; and 88 percent of the completed systems had to
be redesigned. Try to imagine the same kind of gloomy numbers for civil
engineering: three-quarters of all bridges carrying loads below specifica-
tion; almost nine of ten sewage treatment plants, once completed, in
need of redesign; one-third of highway projects canceled because tech-
nical problems have grown beyond the capacity of engineers to solve
them. Silly? Yes. Programming has miles to go before it earns the title
“software engineering.”

In civil engineering, on the other hand, failures are rare enough to make

70

The Software Wars

the news. Perhaps the best-known example is the collapse of the Tacoma-
Narrows Bridge. Its spectacular failure in 1940, because of wind-induced
resonance, was captured on film and has been a staple of physics courses
ever since. The collapse of the suspended walkway in the Kansas City Hy-
att Regency in 1981 is a more recent example. It failed because structural
engineers thought that verifying the design of connections joining the
walkway segments was the job of their manufacturer. The manufacturer
had a different recollection. The American Society of Civil Engineers
quickly adopted a protocol for checking shop designs. These collapses are
remarkable for two related reasons. First, bridge and building failures are
so rare in the United States that when they do occur we continue to talk
about them half a century later. Second, in both cases, engineers correctly
determined the errors and took steps not to repeat them. Programmers
cannot make a similar claim. Even if the cause of system failure is discov-
ered, programmers can do little more than try not to repeat the error in
future systems. Trying not to repeat an error does not compare with build-
ing well-known tolerances into a design or establishing communications
protocols among well-defined
-~ players. One is exhortation.
The other is engineering.
EE None of this is new. Re-
sponding to reports of unus-
‘. able systems, cost overruns, and
outright cancellations, the
NATO Science Committee con-
vened a meeting of scientists,
industry leaders, and program-
mers in 1968. The term software
engineering was invented at this
conference in the hope that,
one day, systematic, quantifi-
able approaches to software
construction would develop. Over the intervening years, researchers have
created a rich set of tools and techniques, from design practices to im-
proved programming languages to techniques for proving program cor-
rectness. Sadly, anyone who uses computers knows that they continue to fail
regularly, inexplicably, and, sometimes, wonderfully—=Software Engineering
Notes continues to publish pages of gloomy tales each quarter. Worse, the
ACM has recently decided not to support efforts to license software engineers
because, in its words, “there is no form of licensing that can be instituted
today assuring public safety.” In effect, software-engineering discoveries of
the past thirty years may be interesting, but no evidence suggests that un-
derstanding them will improve the software-development process.
As the committee that made this decision surely knows, software-

n1

THE AMERICAN SCHOLAR

engineering techniques are honored mostly in the breach. In other words,
business practice, as much as a lack of technical know-how, produces the
depressing statistics I have cited. One business practice in particular ought
to be understood. The characteristics of software often cited as leading to
failure—its complexity, its utter plasticity, its free-floating nature, unham-
pered by tethers to the physical world—make it oddly, even paradoxically,
similar to the practice of military procurement. Here is where the Challenger
and my system, dead these twenty long years, reenter the story.

n the mid-eighties I worked for a large management-consulting firm.

Though this company had long employed a small group of program-
mers, mostly to support in-house systems, its software-development effort
and support staff grew substantially, perhaps by a factor of ten, over a pe-
riod of just a few years. A consulting firm, like a law firm, has a cap on its
profits. Since it earns money by selling time, the number of hours its con-
sultants can bill limits its revenue. And there is a ceiling to that. They have
to eat and sleep, after all. The promise of software is the promise of mak-
ing something from nothing. After development, only the number of sys-
tems that can be sold limits return on investment. In figuring productivity,
the denominator remains constant. Forget about unhappy unions, as with
cars and steel; messy sweatshops, as with clothing and shoes; environmen-
tal regulations, as with oil and petrochemicals. Software is a manufacturer’s
dream. The one problem, a very sticky problem indeed, is that it does not
wear out. The industry responds by adding features, moving commercial
software one step closer to military systems. More on this later. For now, just
understand that my company, like so many others under the influence of
the extraordinary attention that newly introduced personal computers
were receiving at the time, followed the lure of software.

My system had one foot on the shrinking terra firma of large comput-
ers and the other in the roiling, rising sea of microcomputers. In fact, mine
was the kind of system that three or four years earlier would have been writ-
ten in COBOL, the language of business systems. It perhaps would have used
a now obsolete database design, and it would have gone to market within
a year. When told to build a similar system for a microcomputer, I did what
I knew how to do. I designed a gray flannel system for a changing micro-
computer market.

Things went along in a predictable if uninspired way until there was a shift
in management. These changes occur so frequently in business that I had
learned to ignore them. The routine goes like this. Everyone gets a new or-
ganization chart. They gather in conference rooms for mandatory pep talks.
Then life goes on pretty much as before. Every so often, though, manage-
ment decisions percolate down to the geeks, as when your manager arrives
with a security officer and gives you five minutes to empty your desk, unpin
your Dilbert comics, and go home. Or when someone like Mark takes over.

79

The Software Wars

When that happened, I assumed falsely that we would go back to the task
of producing dreary software. But this was the eighties. Junk bonds and
leveraged buyouts were in the news. The arbitrageur was king. Business had
become sexy. Mark, rumor had it, slept three hours a night. He shuttled be-
tween offices in New York, Philadelphia, and Montreal. Though he owned
a house in Westchester County, now best known as the home of the Clin-
tons, he kept an apartment in Philadelphia, where he managed to spend a
couple of days each week. When Mark, the quintessential new manager
(“My door is always open”), arrived, we began to live like our betters in law
and finance. Great bags of bagels and cream cheese arrived each morning.
We lunched in trendy restaurants. I, an erstwhile sixties radical, began to
ride around in taxis, use my expense account, fly to distant cities for two-
hour meetings. Life was sweet.

During this time, my daughter was an infant. Her 4:00 A.M. feeding was
my job. Since I often had trouble getting back to sleep, I sometimes caught
an early train to the office. One of these mornings my office phone rang.
It was Mark. He sounded relaxed, as if finding me at work before dawn was
no more surprising than bumping into a neighbor choosing apples at Safe-
way. This was a sign. Others followed. Once, Mark organized a dinner for
our team in a classy hotel. When the time came for his speech, Mark’s voice
rose like Caesar’s exhorting his troops before the Gallic campaign. He
urged us to bid farewell to our wives and children. We would, he assured
us, return in six months with our shields or upon them. I noticed then that
a few of my colleagues were in evening dress. I felt like Tiresias among the
crows. When programmers wear tuxedos, the world is out of joint.

Suddenly, as if by magic, we went from a handful of programmers pro-
ducing a conventional system to triple that number, and the system was any-
thing but conventional. One thing that changed was the programming
language itself. Mark decided that the system would be splashier if it used
a database-management system that had recently become commercially
available for mainframes and was promised, shortly, for microcomputers.
These decisions—hiring more people to meet a now unmeetable deadline;
using a set of new and untested tools—represented two of the several busi-
ness practices that have been at the heart of the software crisis. Frederick
Brooks, in his classic book, The Mythical Man-Month, argues from his expe-
rience building 1BM’s System 360 operating system that any increased pro-
ductivity achieved by hiring more people gets nibbled at by the increased
complexity of communication among them. A system that one person can
develop in thirty days cannot be developed in a single day by thirty people.
This simple truth goes down hard in business culture, which takes, as an ar-
ticle of faith, the idea that systems can be decreed into existence.

The other practice, relying on new, untested, and wildly complex tools,
is where software reigns supreme. Here, the tool was a relational database-
management system. Since the late sixties, researchers have realized that

73

THE AMERICAN SCHOLAR

keeping all data in a central repository, a database, with its own set of ac-
cess techniques and backup mechanisms, was better than storing data with
the program that used it. Before the development of database-management
systems, it was common for every department in a company to have its own
data, and for much of this data to overlap from department to depart-
ment. So in a university, the registrar’s office, which takes care of student
records, and the controller’s office, which takes care of student accounts,
might both have copies of a student’s name and address. The problem oc-
curs when the student moves and the change has to be reported to two of-
fices. The argument works less well for small amounts of data accessed by
a single user, exactly the kind of application that the primitive microcom-
puters of the time were able to handle. Still, you could argue that a rela-
tional database-management system might be useful for small offices. This
is exactly what Microsoft Access does. But Microsoft Access did not exist in
1986, nor did any other relational
database-management system for .)
microcomputers. Such systems Somethlng unique to
had only recently become avail- software, esPecially new
able for mainframes. software: no experts exist in
‘ One.compa‘ny, however, anin- (} o sense that we might speak
fant builder of database-manage- £ i

ol an expert machinist, a

ment systems, had such software 1 g
for minicomputers and was prom- 1aster electrician, or an

ising a PC version. After weeks of experienced civil engineer-
meetings, after an endless parade There are only those who are
of consultants, after trips to Wash- relatively less ig'norant.
ington, D.C., to attend seminars,
Mark decided to go with the new
product. One of these meetings illustrates something unique to software,
especially new software: no experts exist in the sense that we might speak
of an expert machinist, a master electrician, or an experienced civil engi-
neer. There are only those who are relatively less ignorant. On an early
spring evening, we met in a conference room with a long, polished wood
table surrounded by fancy swivel chairs covered in gorgeous, deep purple
fabric. The room’s walls turned crimson from the setting sun. As the
evening wore on, we could look across the street to another tower, its of-
fices filled with miniature Bartlebys, bent over desks, staring into monitors,
leafing through file cabinets. At the table with representatives from our
company were several consultants from the database firm and an inde-
pendent consultant Mark had hired to make sure we were getting the
straight scoop.

Here we were: a management-consulting team with the best, though still
less than perfect, grasp of what the proposed system was supposed to do,
but almost no grasp of the tools being chosen; consultants who knew the

74

The Software Wars

tools quite well, but nothing about the software application itself, who were
fully aware that their software was still being developed even as we spoke;
and an independent consultant who did not understand either the software
or its application. It was a perfect example of interdependent parasitism.

My company’s sin went beyond working with complex, poorly under-
stood tools. Neither the tools nor our system existed. The database man-
ufacturer had a delivery date and no product. Their consultants were sell-
ing us a nonexistent system. To make their deadline, I am confident they
hired more programmers and experimented with unproven software from
still other companies with delivery dates but no products. And what of those
companies? You get the idea.

No one in our group had any experience with this software once we
adopted it. Large systems are fabulously
complex. It takes years to know their idio-
syncrasies. Since the introduction of the
microcomputer, however, nobody has had
years to develop this expertise. Because
software does not wear out, vendors must
consistently add new features in order to

recoup development costs. That the word
processor you use today bears almost no
resemblance to the one you used ten years

ago has less to do with technological ad-
vances than with economic realities. Our
company had recently acquired a smaller
company in the South. This company
owned a mini computer for which a version
of the database software had already been
released. Mark decided that until the PC
database was ready for release, we could
develop our system on this machine, using 1,200-baud modems, a modem
about one-fiftieth as fast as the one your cable provider tells you is too slow
for the Web, and a whole lot less reliable.

Let me put this all together. We had a new team of programmers who
did not understand the application, using ersatz software that they also did
not understand, which was running on a kind of machine no one had ever
used before, using a remote connection that was slow and unstable.

Weeks before, I had begun arguing that we could never meet the dead-
line and that none of us had the foggiest idea of how to go about building
a system with the tools we had. This was bad form. I had been working in
large corporations long enough to know that when the boss asks if some-
thing can be done, the only possible response is “I'm your boy.” Business
is not a Quaker meeting. Mark didn’t get to be my boss by achieving con-
sensus. [knew that arguing was a mistake, but somehow the more [argued,

75

THE AMERICAN SCHOLAR

the more I became gripped by a self-righteous fervor that, while unattrac-
tive in anyone (who likes a do-gooder?), is suicide in a corporate setting.
Can-do-ism is the core belief. My job was to figure out how to extend the
deadline, simplify the requirements, or both—not second-guess Mark. One
afternoon I was asked if I might like to step down as chief architect and take
over the documentation group. This was not a promotion.

Sitting in my new cubicle with a Raskolnikovian cloud over my head, I
began to look more closely at the database-management system’s docu-
mentation. Working with yet another consultant, I filled a paper database
with hypothetical data. What I discovered caused me to win the argument
but lose the war. I learned that given the size of the software itself and the
amount of data the average client would store, along with the overhead that
comes with a sophisticated database, a running system would fill a micro-
computer hard disk, then limited to 30 megabytes, several times over. If, by
some stroke of luck, some effort of will, some happy set of coincidences that
I had yet to experience personally, we were able to build the system, the
client would run up against hardware constraints as soon as he tried to use
it. After weeks of argument, my prestige was slipping fast. I had already been
reduced to writing manuals for a system I had designed. I was the sinking
ship that every clearheaded corporate sailor had already abandoned. My tri-
umphant revelation that we could not build a workable system, even if we
had the skill to do so, was greeted with (what else?) complete silence.

Late in 1986 James Fallows wrote an article analyzing the Challenger ex-
plosion for the New York Review of Books. Instead of concentrating on the
well-known O-ring problem, he situated the failure of the Challengerin the
context of military procurement, specifically in the military’s inordinate
fondness for complex systems. This fondness leads to stunning cost over-
runs, unanticipated complexity, and regular failures. It leads to Osprey air-
craft that fall from the sky, to anti-missile missiles for which decoys are easy
to construct, to FA-22 fighters that are fabulously over budget. The litany
goes on. What these failures have in common with the Challengeris, Fallows
argues, “military procurement disease,” namely, “over-ambitious schedules,
problems born of too-complex design, shortages of spare parts, a ‘can-do’
attitude that stifles embarrassing truths (‘No problem, Mr. President, we can
lick those Viet Cong’), and total collapse when one component unexpect-
edly fails.” Explanations for this phenomenon include competition among
the services; a monopoly hold by defense contractors who are building, say,
aircraft or submarines; lavish defense budgets that isolate military pur-
chases from normal market mechanisms; the nature of capital-intensive,
laptop warfare where hypothetical justifications need not—usually can-
not—be verified in practice; and a little-boy fascination with things that fly
and explode. Much of this describes the software industry too.
Fallows breaks down military procurement into five stages:

76

The Software Wars

The Vegematic Promise, wherein we are offered hybrid aircraft, part heli-
copter, part airplane, or software that has more features than could be
learned in a lifetime of diligent study. Think Microsoft Office here.

The Rosy Prospect, wherein we are assured that all is going well. I call this
the 90 percent syndrome. I don’t think I have ever supervised a project, ei-
ther as a software manager overseeing professionals or as a professor over-
seeing students, that was not 90 percent complete whenever I asked.

The Big Technical Leap, wherein we learn that our system will take us to
regions not yet visited, and we will build it using tools not yet developed.
So the shuttle’s solid-fuel boosters were more powerful than any previously
developed boosters, and bringing it all back home, my system was to use a
database we had never used before, running on a computer for which a ver-
sion of that software did not yet exist.

The Unpleasant Surprise, wherein we learn something unforeseen and, if we
are unlucky, calamitous. Thus, the shuttle’s heat-resistant tiles, all 31,000 of
them, had to be installed at the unexpected rate of 2.8 days per tile, and my
system gobbled so much disk space that there was scarcely any room for data.

The House of Cards, wherein an unpleasant surprise, or two, or three,
causes the entire system to collapse. The Germans flanked the Maginot
Line, and in my case, once we learned that our reliance on a promised data-
base package outstripped operating-system limits, the choices were: one,
wait for advances in operating systems; two, admit a mistake, beg for for-
giveness, and resolve to be more prudent in the future; or, three, push on
until management pulls the plug.

In our case, the first choice was out of the question. We were up against
a deadline. No one knew when, or if, the 30 MB disk limit would be bro-
ken. The second choice was just as bad. The peaceable kingdom will be
upon us, the lamb will lie down with the lion, long before you'll find a hard-
driving manager admitting an error. These guys get paid for their testos-
terone, and for men sufficiently endowed, in the famous words of former
NAsA flight director Gene Kranz, “failure is not an option.” We were left with
the third alternative, which is what happened. Our project was canceled.
Inside the fun house of corporate decision making, Mark was promoted—
sent off to manage a growing branch in the South. The programmers left
or were reassigned. The consultant who gave me the figures for my calcu-
lations was fired for reasons that I never understood. I took advantage of
my new job as documentation chief and wrote an application to graduate
school in computer science. I spent the next few years, while a student, as
a well-paid consultant to our firm.

J ust what is it about software, even the most conventional, the most mind-
numbing software, that makes it similar to the classiest technology on the
planet? In his book Trapped in the Net, the Berkeley physicist turned sociol-
ogist, Gene Rochlin, has this to say about computer technology:

7

THE AMERICAN SCHOLAR

Only in a few specialized markets are new developments in hardware and
software responsive primarily to user demand based on mastery and the
full use of available technical capacity and capability. In most markets, the
rate of change of both hardware and software is dynamically uncoupled
from either human or organizational learning logistics and processes, to
the point where users not only fail to master their most recent new capa-
bilities, but are likely to not even bother to try, knowing that by the time
they are through the steep part of their learning curve, most of what they
have learned will be obsolete.

To give a homey example, I spent the last quarter hour fiddling with the
margins on the draft copy of this article. Microsoft Word has all manner of
arcane symbols—Exacto knives, magnifying glasses, thumbtacks, globes—
plus an annoying little paper clip ho-
munculus that pops up, seemingly at
random, to offer help that I always de- Though the medium
cline. I don’t know what any of thisstuff g which it is stored

does. Since one of the best-selling com- might decav. the software
mercial introductions to the Microsoft . 0k . .
itself, because it exists

Office suite now runs to nearly a thou- |

sand pages, roughly the size of Shake- 11 the same ethereal ey
speare’s collected works, I won't find asa novel, scored music,
out either. To the untrained eye, thatis ora mathematical

to say, to mine, the bulk of what consti- rem. 1 1
Y eorem, lasts as long as

tutes Microsoft Word appears to be use- (he abi.lity to decode it.
ful primarily to brochure designers and

graphic artists. This unused cornucopia

is not peculiar to Microsoft, nor even to microcomputer software. Pro-
grammers were cranking out obscure and poorly documented features
long before computers became a consumer product.

But why? Remember the nature of software, how it does not wear out.
Adding features to a new release is similar, but not identical, to changes in
fashion or automobile styling. In those industries, a change in look gives
natural, and planned, obsolescence a nudge. Even the best-built car or the
sturdiest pair of jeans will eventually show signs of wear. Changes in fash-
ion just speed this process along. Not so with software. Though the medium
on which it is stored might decay, the software itself, because it exists in the
same ethereal way as a novel, scored music, or a mathematical theorem,
lasts as long as the ability to decode it. That is why Microsoft Word and the
operating systems that support it, such as Microsoft Windows, get more
complex with each new release.

But this is only part of the story. While software engineers at Oracle or
Microsoft are staying up late concocting features that no one will ever use,
hardware engineers at Intel are inventing ever faster, ever cheaper proces-

78

The Software Wars

sors to run them. If Microsoft did not take advantage of this additional
capacity, someone else would. Hardware and software are locked in an in-
tricate and pathological dance. Hardware takes a step. Software follows.
Hardware takes another step, and so on. The result is the Vegematic
Promise. Do you want to write a letter to your bank? Microsoft Word will
work fine. Do you need to save your work in any one of fifteen different dig-
ital formats? Microsoft Word will do the job. Do you want to design a Web
page, lay out a brochure, import clip art, or include the digitally rendered
picture of your dog? The designers at Microsoft have anticipated your
needs. They were able to do this because the designers at Intel anticipated
theirs. What no one anticipated was the unmanageable complexity of the
final product from the user’s perspective and the stunning, internal com-
plexity of the product that Microsoft brings
to market. In another time, this kind of
complexity would have been reserved for
enterprises of true consequence, say the
Manhattan Project or the Apollo missions.
Now the complexity that launched a thou-
sand ships, placed men on the moon, con-
trolled nuclear fission and fusion, the
complexity that demanded of its designers
years of training and still failed routinely,
sits on my desk. Only this time, developers
with minimal, often informal, training, us-
ing tools that change before they master
them, labor for my daughter, who uses the
fruits of their genius to chat with her
friends about hair, makeup, and boys.

As I say, accelerating complexity is not just a software feature. Gordon
Moore, one of Intel’s founders, famously observed, in 1965, that the num-
ber of transistors etched on an integrated circuit board doubled every year
or so. In the hyperbolic world of computing, this observation, altered
slightly for the age of microprocessors, has come to be called Moore's Law:
the computing power of microprocessors tends to double every couple of
years. Though engineers expect to reach physical limits sometime in the
first quarter of this century, Moore has been on target for the past couple
dozen years. As a related, if less glamorous example, consider the remote
control that accompanies electronic gadgetry these days. To be at the helm
of your VCR, TV, DVD player, stereo (never mind lights, fans, air-condition-
ing, and fireplace), is to be a kind of Captain Kirk of home and hearth. The
tendency, the Vegematic Promise, is to integrate separate remote controls
into a single device. A living room equipped with one of these marvels is
part domicile, part mission control. I recently read about one fellow who,
dazzled by the complexity of integrated remotes, fastened his many devices

79

THE AMERICAN SCHOLAR

to a chunk of four-by-four with black electrical tape. I have ceded operation
of my relatively low-tech equipment to my teenage daughter, the only per-
son in my house with the time or inclination to decipher its runic symbols.

But software is different in one significant way. Hardware, by and large,
works. When hardware fails, as early versions of the Pentium chip did, it is
national news. It took a computer scientist in Georgia doing some fairly ob-
scure mathematical calculations to uncover the flaw. If only software errors
were so well hidden. Engineers, even electrical engineers, use well-under-
stood, often off-the-shelf, materials with well-defined limits. To offer a sim-
ple example, a few years ago I taught a course in digital logic. This course,
standard fare for all computer science and computer engineering majors,
teaches students how to solve logic problems with chips. A common lab
problem is to build a seven-segment display, a digital display of numbers,
like what you might find on an alarm clock. Students construct it using a
circuit board and chips that we order by the hundreds. These chips are de-
scribed in a catalogue that lists the number and type of logical operations
encoded, along with the corresponding pins for each. If you teach software
design, as I do, this trespass into the world of the engineer is instructive.
Software almost always gets built from scratch. Though basic sorting and
string manipulation routines exist, these must be woven together in novel
ways to produce new software. Each programmer becomes a craftsman
with a store of tricks up his sleeve. The more experienced the programmer,
the more tricks.

To be fair, large software-development operations maintain libraries of
standard routines that developers may dip into when the need arises. And
for the past ten years or so, new object-oriented design and development
techniques have conceived of ways to modularize and standardize compo-
nents. Unfortunately, companies have not figured out how to make money
by selling components, probably for the same reason that the music in-
dustry is under siege from napster’s descendants. If your product is only a
digital encoding, it can be copied endlessly at almost no cost. Worse, the
object-oriented programming paradigm seems often to be more complex
than a conventional approach. Though boosters claim that programmers
using object-oriented techniques are more productive and that their prod-
ucts are easier to maintain, this has yet to be demonstrated.

Software is peculiar in another way. Though hardware can be complex
in the extreme, software obeys no physical limits. It can be as feature-rich
as its designers wish. If the computer’s memory is too small, relatively ob-
scure features can be stored on disk and called into action only when
needed. If the computer’s processor is too slow, just wait a couple of years.
Designers want your software to be very feature-rich indeed, because they
want to sell the next release, because the limits of what can be done with a
computer are not yet known, and, most of all, because those who design
computer systems, like the rich in the world of F. Scott Fitzgerald, are dif-

8o

The Software Wars

ferent from you and me. Designers love the machine with a passion not
constrained by normal market mechanisms or even, in some instances, by
managerial control.

On the demand side, most purchases are made by institutions, busi-
nesses, universities, and the government, where there is an obsessive fear
of being left behind, while the benefits, just as in the military, are difficult
to measure. The claims and their outcomes are too fuzzy to be reconciled.
Since individual managers are rarely held accountable for decisions to buy
yet more computing equipment, it should not surprise you that wildly
complex technology is being underused. Thus: computer labs that no one
knows what to do with, so-called smart classrooms that are obsolete before
anyone figures out how to use them, and offices with equipment so com-
plicated that every secretary doubles as a systems administrator. Even if
schools and businesses buy first and ask questions later, you don’t have to
put up with this. You could tell Microsoft to keep its next Windows up-
grade, your machine is working very nicely right now, thank you. But your
impertinence will cost you. Before long, your computer will be an island
where the natives speak a language cut off from the great linguistic com-
munities. In a word, you will be isolated. You won'’t be able to buy new
software, edit a report you wrote at work on your home computer, or send
pictures of the kids to Grandma over the Internet. Further, a decision to
upgrade later will be harder, perhaps impossible, without losing everything
your trusted but obsolete computer has stored. This is what Rochlin means
when he writes that hardware and software are “dynamically uncoupled
from either human or organizational learning.” To which I would add “hu-
man organizational need.”

What if the massively complex new software were as reliable as hardware
usually is? We still wouldn’t know how to use it, but at least our screens
wouldn’t lock up and our projects wouldn’t be canceled midstream. This
reliability isn’t going to happen, though, for at least three reasons. First, pro-
grammers love complexity, love handcrafted systems, with an ardor that
most of us save for our spouses. You have heard about the heroic hours
worked by employees of the remaining Internet start-ups. This is true, but
true only partly so that young men can be millionaires by thirty. There is
something utterly beguiling about programming a computer. You lose track
of time, of space even. You begin eating pizzas and forgetting to bathe. A
phone call is an unwelcome intrusion. Second, nobody can really oversee
a programmer’s work, short of reading code line by line. It is simply too
complex for anyone but its creator to understand, and even for him it will
be lost in the mist after a couple of weeks. The 90 percent syndrome is a
natural consequence. Programmers, a plucky lot, always think that they are
further along than they are. It is difficult to foresee an obstacle on a road
you have never traveled. Despite all efforts to the contrary, code is hand-
crafted. Third—and this gets to the heart of the matter—system specifica-

81

THE AMERICAN SCHOLAR

tions have the half-life of an adolescent friendship. Someone—the project
manager, the team leader, a programmer, or, if the system is built on con-
tract, the client—always has a new idea. It is as if a third of the way through
building a bridge, the highway department decided it should have an ad-
ditional traffic lane and be moved a half mile downstream.

Notice that not one of the reasons I have mentioned for failed software
projects is technical. Researchers trying to develop a discipline of software
engineering are fond of saying that there is no silver bullet: no single
technical fix, no single software-development tool, no single, yet-to-be-
imagined programming technique that will result in error-free, maintain-
able software. The reason for this is really quite simple. The problem with
software is not technical. Remember my project. It fell into chaos because
of foolish business deci-
sions. Had Mark resisted
the temptation to use the - oe .
latest software-development Until computing is organized
products, a temptation he like engineering, law, and
succumbed to not because medicine thro‘lgh a combination
they would produce a bet- of self-regulating professional
ter system, but because they bodies, gove ent-impose d

would seem flashier to
soapectbe elienis, et standards, and the threat of

might have gone to market lltlg'atlon, Inviting a comRuter
with only the usual array of ~into your house or office is
problems. to invite complexity

Interestingly, the geek’s masquerading as convenience.
geek, Bruce Schneier, in his
recent book, Secrets and Lies,
has come to similar conclu-
sions about computer security: the largest problems are not technical. A
computer security expert, Schneier has recanted his faith in the imper-
meability of cryptographic algorithms. Sophisticated cryptography is as re-
sistant as ever to massive frontal attacks. The problem is that these algo-
rithms are embedded in computer systems that are administered by real
human beings with all their charms and foibles. People use dictionary en-
tries or a child’s name as passwords. They attach modems to their office
computers, giving hackers easy access to a system that might otherwise be
more thoroughly protected. They run versions of Linux with all network
routines enabled, or they surreptitiously set up Web servers in their dor-
mitory rooms. Cryptographic algorithms are no more secure than their
contexts.

Though the long march is far from over, we know a lot more about man-
aging the complexity of software systems than we did twenty years ago. We
have better programming languages and techniques, better design prin-

82

The Software Wars

ciples, clever software to keep track of changes, richly endowed proce-
dures for moving from conception to system design to coding to testing
to release. But systems still fail and projects are still canceled with the same
regularity as in the bad old days before object-oriented techniques, before
software engineering becomes an academic discipline. These techniques
are administered by the same humans who undermine computer secu-
rity. They include marketing staff who decree systems into existence;
companies that stuff yet more features into already overstuffed software;
designers and clients who change specifications as systems are being
built; programmers who are more artist than engineer; and, of course,
software itself that can be neither seen, nor touched, nor measured in
any significant way.

There is no silver bullet. But just
as the Challenger disaster might have
been prevented with minimal com-
mon sense, so also with software fail-
ure. Keep it simple. Avoid exotic
and new programming techniques.
Know that an army of workers is no
substitute for clear design and am-
ple time. Don’t let the fox, now dis-
guised as a young man with a head
full of acronyms, guard the chicken
coop. Make only modest promises,

Good advice, certainly, but no
one is likely to listen anytime soon.
Until computing is organized like
engineering, law, and medicine
through a combination of self-regu-
lating professional bodies, government-imposed standards, and, yes, the
threat of litigation, inviting a computer into your house or office is to in-
vite complexity masquerading as convenience. Given the nature of com-
puting, even these remedies may fall short of the mark.

But don’t despair. If software engineering practice is out of reach, you
still have options. For starters, you could just say no. You could decide that
the ease of buying plane tickets online is not worth the hours you while away
trying to get your printer to print or your modem to dial. Understand that
saying no requires an ascetic nature: abstinence is not terribly attractive to
most of us. On the other hand, you could sign up for broadband with the
full knowledge that your computer, a jealous lover, will demand many,
many Saturday afternoons. Most people are shocked when they learn that
their computer requires more care than, say, their refrigerator. Yet I can tell
you that its charms are immeasurably richer. First among them is the dream
state. It’s almost irresistible. 2

83

Copyright of American Scholar is the property of Phi Beta Kappa Society and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for individual
use.

